

基于波长和模式混合复用的片上光交换网络架构

郭鹏星^{1,2},周佳豪^{1,2},侯维刚^{1,2*},郭磊^{1,2}

¹重庆邮电大学通信与信息工程学院,重庆400065; ²重庆邮电大学智能通信与网络安全研究院,重庆400065

摘要 为有效地提高片上光交换网络的交换容量及规模,提出了一种基于波长和模式混合复用的无阻塞片上光交换网 络架构。首先设计了基于微环谐振器的波长和模式混合复用的2×2光开关,并采用Benes拓扑互连成大规模无阻塞的 交换网络。此外,通过设计波长和模式选择及复用模块,使所有节点间能够并行传输数据,并支持多播通信。为了验证 所提观点,利用AnsysLumerical仿真平台模拟了一个支持2种模式和4种波长混合复用的16×16光交换网络。仿真验 证了所提交换网络能够实现所有节点间多维复用信号的并行数据交换,且16×16网络的最大插入损耗小于2.1dB,模间 串扰小于-18.4dB,网络最大和最小插入损耗差值小于0.5dB,证明该交换网络具有良好的公平性。最后将所提结构与 传统的基于单波长单模式以及多波长单模式的光交换网络进行对比,证明了所提结构可以在不增加波长成本的情况下 提升交换网络的容量及节点的规模。

关键词 集成光学;片上光交换网络;无阻塞;微环谐振器;波长和模式混合复用;多播通信
 中图分类号 TN256 _________ 文献标志码 A _________ DOI: 10.3788/AOS230472

1引言

作为新基建的基础设施,数据中心是承载各类信息技术的物理底座,在生物医学、航空航天等领域发挥着巨大作用。在数据中心,交换网络能够为机柜之间、服务器之间以及服务器内节点之间提供数据交互的物理通道,从而将不同的计算节点互连成为一个大型的计算系统,实现大规模的计算协同^[1-2]。得益于硅光集成技术的不断发展,光学交换网络已经从数据中心内机柜之间逐渐延伸到片上不同计算节点之间^[3-6]。此外,随着人工智能、云计算等新一代信息技术的发展,片上节点间需交换的数据量呈现爆发式增长。因此,构建大规模、大容量的片上光交换网络对促进新一代信息技术的发展有着巨大的科学意义和应用价值。

现阶段片上光交换网络的研究主要集中在基于马赫-曾德尔干涉仪(MZI)、基于微环谐振器(MRR)以及基于阵列波导光栅(AWG)的片上光交换网络架构^[7-14]。其中基于AWG的交换网络为了提高通信容量,通常将AWG与可调谐波长转换器(TWC)结合来进行波长路由,但TWC能耗较高,不利于在一定能耗限制下实现大规模数据交换^[7]。此外,MZI具有较大的占地面积且其传输矩阵受到多个参数的影响,使传

输矩阵的校准也具有一定的挑战性^[so]。因此基于 MZI的结构同样难以实现大规模、大容量的数据交换。

相对于基于AWG和MZI而言,基于MRR的片上 光交换网络具有较小的占地面积以及支持波分复用 (WDM)等独特的优势^[10-15]。Guo等^[10]提出了基于 MRR辅助MZI的16×16光互连开关,由于没有避免 使用MZI,使得这种光交换网络结构不利于在大幅缩 小芯片面积的同时实现更高的集成密度。Nikolova 等^[11]提出了基于两个MRR和两个交叉波导的2×2光 开关,构建了一种8×8的Benes拓扑交换网络架构, 并评估采用WDM技术扩展网络架构来提高网络通信 带宽的可能性。其中WDM技术的利用可以使单波导 通道中同时传输多个波长的信号,有效地提升通信的 带宽。但由于通道带宽和系统复杂度的限制,只采用 WDM技术所能提供的带宽容量也难以满足大规模交 换网络的交换容量需求。

类似于WDM,模式复用(MDM)是在空间域将信号进行复用的技术,从而提升数据链路的带宽^[16-18]。 波长和模式混合复用技术^[19-21]可以在一个波导中同时 传输不同模式和波长的光信号,成倍地提高节点之间 通信链路的带宽。Luo等^[19]提出一种由多模波导和 MRR组成的片上波长和模式混合复用系统,该系统中

收稿日期: 2023-01-12; 修回日期: 2023-02-20; 录用日期: 2023-03-07; 网络首发日期: 2023-03-13

基金项目: 国家自然科学基金(62071076,62205043,62222103,62075024)、重庆市自然科学基金(CSTB2022NSCQ-MSX1334)、重庆市教委创新研究群体项目(CXQT21019)

多模波导可支持5个空间模式的复用,每个MRR在整个C波段支持87个波分复用通道,并实现了4.35 Tb/s的总数据速率。Wang等^[20]提出了一种由级联非对称方向耦合器构成的4通道模式复用器和两个双向工作的16×16 AWGs组成的波长和模式混合(解)复用器。该结构可以实现64通道混合(解)复用,各个通道串扰达到约-14 dB。然而,现阶段基于波长和模式混合复用的方案主要集中于复用/解复用器结构的设计。对于所报道的互连方案,通常将单个节点生成的数据同时分配到不同的波长和模式,然后将多通道数据复用到单个波导中进行传输,以增加通道带宽。然而这种方式忽略了不同模式或者不同波长的多维复用信号之间的数据交换,虽然可以有效地提升交换容量,但所支持的交换节点的规模仍然受限。

基于此,本文提出一种基于波长和模式混合复用的片上光交换网络架构。该架构采用Benes拓扑作为核心交换单元,实现无阻塞特性。架构包括了波长分配模块、模式选择和复用模块、实现波长模式混合交换的2×2基本光开关单元,保证所提架构能够实现所有节点之间的多维复用信号进行并行数据交换,此外还可以实现多播的数据传输。为验证本文所提出的结构,使用光学仿真平台Ansys Lumerical 以25 Gbps的数据传输率对一个两种模式、4个波长复用的16×16的片上交换网络的性能进行了仿真验证。在不考虑光栅耦合损耗的情况下,16×16 网络的最大插入损耗小于2.1 dB,模间串扰小于-18.4 dB。网络最大和最小插入损耗差值小于0.5 dB,证明该交换网络具有良好的公平性。最后,利用所提交换网络结构与传统的基

第 43 卷 第 13 期/2023 年 7 月/光学学报

于单波长单模式(SWSM)以及多波长单模式 (MWSM)的光交换网络结构进行了插入损耗以及网 络扩展性方面的仿真对比,验证了本文所提结构的良 好性能。

2 交换网络结构设计

2.1 基于波长和模式混合复用的光交换网络架构

图1显示的是所提的基于波长和模式混合复用的 片上光交换网络架构。该架构包括完成波长及模式选 择和复用单元的发送模块、基于2×2光开关级联而成 的 N×N Benes 光交换模块,以及基于 MRR 进行滤波 的、内含模式/波长解复用单元的接收模块。其中发送 模块包含 N个双链路输入、单链路输出的波长-模式选 择/复用模块,输入信号为两组波长复用的基模光信 号,其中一组光信号经过模式转换为高阶模式信号后 与另一组基模信号进行复用,并从一个端口输出。N× N Benes 光交换模块是一种具有N输入、N输出的多 级互连网络,其级数为2log₂N-1,光开关模块总数 为Nlog₂N-N/2,其中每一个光开关模块都支持波 长以及模式的交换。接收端包含 N个模式-波长解复 用模块,每个模块包含一个输入链路,用来对接收到的 波长和模式复用的信号进行解复用。与传统的基于波 长和模式混合复用的片上光交换网络不同,本文所设 计的交换架构的主要特点是不仅可以用于波长和模式 复用来提升带宽,还可以用于不同波长、模式之间的选 择和转换,使所有的节点都能实现任意的波长及模式 分配。因此,其不仅可以提高片上光互连网络的交换 容量,还可以根据通信需求,将波长和模式分配给不同 的节点,提升互连网络规模。

图1 基于波长-模式混合复用的片上光交换网络架构

Fig. 1 On-chip optical switching network architecture based on hybrid wavelength-mode division multiplexing

2.2 基于波长和模式混合复用的发送和接收模块

在发送端,所有的处理器节点被分成2N组,每组 中包含W个节点,且每一组的输入都是由W个波长 复用的WDM信号,如图2(a)所示。每个节点与一个 基于 MRR 的电光调制器阵列相连,实现电光的转换。 每个组中需要打开的 MRR 的数量和所需要调制的波 长由网络中工作节点数量和每个节点所携带的数据量 来动态调整。例如在图 2(a)中,与节点 W 相连的调制

第 43 卷 第 13 期/2023 年 7 月/光学学报

器组中的谐振波长为 λ_1 和 λ_2 的MRR处于打开状态,节 点 W处的数据将会加载到波长 λ_1 和 λ_2 上传输到输出 端口。同理,将节点1的数据加载到波长 λ_w 进行传输, 最后与该组中其他波长的信号复用从输出端口输出。 此外,当将某个节点的数据调制到多个波长通道上进 行同时传输后,在接收端可以根据波长选择将信号分成多路传输到不同的接收节点中,实现多播传输。在 任何情况下,每个组中不同节点的数据需要调整到不同的波长上以避免冲突。

图 2 发送和接收模块结构。(a)波长选择/复用模块;(b)模式选择/复用模块;(c)模式/波长解复用模块

Fig. 2 Structures of transmitting and receiving modules. (a) Wavelength selection/multiplexing module; (b) mode selection/ multiplexing module; (c) mode/wavelength demultiplexing module

被调制的光信号从图 2(a)所示的波长选择模块 输出之后,将会进入图 2(b)所示的模式选择/复用模 块(MSM),其作用是将输入的基模信号分别转换成不 同的模式并进行复用后从一个端口输出。如图 2(b) 所示,为了实现 2个模式的复用,该模块配置有 2个输 入端口,分别与 2 组波长选择模块的输出端口相连。 每个模式选择/复用模块有一个输出端口与交换模块 中的 Benes 的输入端口相连。在 MSM 中具有两种通 过锥形器互连的不同宽度的波导。其中,单模波导 (single-mode waveguide)只支持基模(M₁),而多模波 导(multi-mode waveguide)可以支持 M₁和高阶模(M₂) 两个模式。此外,两个模式转换区域由单模波导和多 模波导组成的非对称耦合波导构成,根据耦合模理论, 单模波导和多模波导中的本征模式满足耦合模方程:

$$\frac{\mathrm{d}a_1}{\mathrm{d}z} = -\mathrm{j}\beta_1 a_1 + \kappa_{12} a_2, \ \frac{\mathrm{d}a_2}{\mathrm{d}z} = -\mathrm{j}\beta_2 a_2 + \kappa_{21} a_1, \ (1)$$

式中: a_1 、 a_2 分别为模式 M₁、M₂的复振幅; β_1 、 β_2 分别为 M₁、M₂的传播常数; κ_{12} 、 κ_{21} 分别为两个波导之间的交 叉耦合系数,假设两个波导中的模式光 $a_1(0)$ 、 $a_2(0)$ 在 z=0处发射,则式(1)的解为

$$a_{1}(z) = \left[a_{1}(0) \left(\cos \beta_{0} z + j \frac{\beta_{2} - \beta_{1}}{2\beta_{0}} \sin \beta_{0} z \right) + \frac{\kappa_{12}}{\beta_{0}} a_{2}(0) \sin \beta_{0} z \right] e^{-j[(\beta_{1} + \beta_{2})/2]z},$$

$$a_{2}(z) = \left[\frac{\kappa_{21}}{\beta_{0}} a_{1}(0) \sin \beta_{0} z + a_{2}(0) \left(\cos \beta_{0} z + j \frac{\beta_{1} - \beta_{2}}{2\beta_{0}} \sin \beta_{0} z \right) \right] e^{-j[(\beta_{1} + \beta_{2})/2]z},$$
(2)

式中,

$$\beta_0 = \sqrt{\left(\frac{\beta_1 - \beta_2}{2\beta_0}\right)^2 + \kappa_{12}\kappa_{21}} \,. \tag{3}$$

假设初始时 $a_1(0) = 1_a_2(0) = 0$,则 M_1 到 M_2 的耦合为

 $\kappa_{21}/\beta_0 \sin\beta_0 z_o$ 。当单模波导中 M_1 信号的有效折射率与 多模波导中 M_2 信号的有效折射率相同时,即 $\beta_1 = \beta_2$, 达到相位匹配条件,此时单模波导中 M_1 模式完全耦合 到多模波导中并转换为 M_2 模式。此外,锥形器(taper) 处连接的单模波导输入的 M_1 模式,由于 taper 的绝热 作用到达多模波导中依然保持 M₁模式,此时多模波导 中存在的两种模式由于有效折射率不同,两者不会发 生耦合,从而实现模式复用。

为了实现两个输入端口的信号都可以进行从 M₁ 到M。的转换,需设计两个从单模波导到多模波导转换 的模式转换区域。此外,为了实现两个非接触波导之 间的数据交换,设计了基于单微环结构的开关阵列 (SMR)和基于双环耦合结构的开关阵列(CMR),如 图 2(b) 所示。SMR 阵列中微环与单模波导及多模波 导的耦合间距不同,分别为间距1(gap 1)和间距2 (gap 2)。在CMR阵列中,单模波导与环、环与环之间 形成三个耦合区域,其间隔分别为间距3(gap 3)、间距 4(gap 4)和间距 5(gap 5)。在模式转换区 1 和 2 内, 一 旦满足前面所述的相位匹配条件,窄波导基模信号可 以激励宽波导中的高阶模,实现从基模到高阶模的转 变。因此,当SMR和CMR中谐振波长为λ₂的MRR处 于打开时,从输入端口1输入的波长为λ,的M,模信号 将会与SMR中波长为λ。的MRR发生谐振并模式转换 为高阶模 M2信号并从多模波导输出,而其他波长的信 号将会从MRR直通输出并经过锥形器进入多模波导 中,保持基模M₁不变。从输入端口2输入的波长为λ₂ 的 M,模信号将会与 CMR 中波长为 λ,的 MRR 发生谐 振,然后经过锥形器后到达输出端口,且保持基模 M₁ 不变,而其他波长的信号将会从CMR中的MRR直通 输出并经过模式耦合区1后转变为高阶模M。信号并 从多模波导输出。

在 MSM 中, 不管 MRR 处于关闭还是打开状态, 两个输入信号都将会复用到一个端口中输出,实现模 式复用。当 MRR 都处于打开状态时, 从端口1输入的 M₁信号会转变成 M₂信号。当处于关闭状态时, 从输 入端口2输入的 M₁信号会转变成 M₂信号。因此,可以 通过控制 MRR 的开关状态来完成模式的转换、选择 及复用。

接收端含有 N个接收模块,每个模块的输入端与 Benes 网络的一个输出端口相连。其输入是一个多 模、多波长的复用信号。每个模块内包含 2W个节点, 每个节点与一个特定波长的微环相连,实现波长的解 复用。在图 2(c)中, M₂模式的输入信号将会在与节点 1到节点 W 相连的 MRR 处转换为基模 M₁,并经过电 光转换后发送到相应的节点中。携带 M₁模式的输入 信号最终将会根据不同的波长传输到节点 W+1到节 点 2W。为了减小控制复杂度,接收端中所有的无源 MRR 都一直处于谐振状态实现被动滤波。在工作中 根据目的节点所处的位置来确定发送节点所采用的模 式和波长。

2.3 基于波长和模式混合复用的交换模块

经过MSM之后的光信号将会进入到交换网络的 输入端口。本文中,光交换模块采用Benes 拓扑,因为 它被证明是非阻塞、可扩展的并有很高的交换效率^[9]。 Benes中的核心单元就是2×2光交换单元,所以为了 提高整个交换网络的交换容量,首要的问题是增加 2×2单元的交换能力。因此,本文提出了一个基于波 长和模式混合复用的2×2光开关模块,如图3所示。 该结构中每个输入端口包括两种模式和W种不同的 波长,因此支持2×W输入数据通道任意组合的数据 交换。该交换单元包含两个无源的模式(解)复用器和 两个有源的单模2×2光开关单元。每个输入端口输 入的 M₂和 M₁模式的光信号经过模式解复用器后被分 别传输到MR Group 1和MR Group 2的输入端口中。 每个输入端口输入2W组波长和模式混合复用光学信 号,包括两个模式(M_2 和 M_1)和 W个波长($\lambda_1, \lambda_2, \cdots$, λ_w)。假设从端口1输入的信号为传输 M_1 模式的 (012, 012, 012, 012) 和传输 M2模式的(112, 112, 112, 112),从端口2输入的信号为传输 M₁模式的(112, 112,

图 3 基于波长和模式混合复用的 2×2 片上光交换单元示意图

Fig. 3 Diagram of 2×2 on-chip optical switching block based on hybrid MDM-WDM multiplexing

11₂, 11₂) 和传输 M₂模式的(01₂, 01₂, 01₂, 01₂)。当 MR_Group 1 中谐振波长为 λ_1 和 λ_2 的 MRRs 以及 MR_Group 2 中谐振波长为 λ_2 的 MRR 处于谐振状态 时, 从输入端口 1 输入的 M₁ λ_2 、M₂ λ_1 、M₂ λ_2 这三组光信 号将会从端口 2 输出,其余光信号会从端口 1 输出。从 输入端口 2 输入的 M₁ λ_2 、M₂ λ_1 、M₂ λ_2 这三组光信号将会 从端口 1 输出,其余光信号会从端口 2 输出。因此,通 过对 MR_Group 1 和 MR_Group 2 中 MRR 的开关控制 可以实现对不同波长信号的输出端口的选择。

为便于理解,这里假设了两类具有代表性的情况, 即只有一个端口一个模式的输入通信请求和两个端口 同时输入不同模式信号的通信请求。当只有一个输入 请求时,最多只需要打开一个微环组,例如当输入端口 1的 M₁信号需要与输出端口 2 中的 M₁模式对应的端 口通信时,只需打开组 MR_Group 2 中的 MRR。对于 第 43 卷 第 13 期/2023 年 7 月/光学学报

满负载通信时,当所有的MRRs都处于关闭状态时,从 输入端口1和输入端口2输入的2W组光信号将会分 别从输出端口1和输出端口2输出。当所有的MRRs 都处于打开状态时,从输入端口1和输入端口2输入的 光信号将会分别从输出端口2和输出端口1输出。因 此,一个2×2的光交换单元可以支持4W组数据同时 传输、交换,且互不影响,可有效提升交换节点的规模 及交换网络的容量。

3 仿真分析

3.1 16×16交换网络的传输频谱分析

为验证本文所提出的结构,在本节中,利用 ANSYS Lumerical Soultions^[22]仿真平台对一个如图4 所示的支持2种模式、4种波长复用的16×16规模的 交换网络的性能进行了仿真验证。

图 4 16×16交换网络结构示意图 Fig. 4 Schematic diagram of 16×16 switching network structure

仿真采用脊形波导结构,二氧化硅层厚度为 3 μm, 硅波导高度为 0.22 μm, 刻蚀厚度为 150 nm。图 5(a)显示的是不同宽度下波导的有效折射率,可以看 出,在0.8~1.2 um 左右的宽度范围内该波导可以同 时支持 TE₀和 TE₁两种模态。本文仿真采用的单模和 多模波导的宽度分别为0.45 μm 和1 μm。微环的半 径分别为9.96、9.98、10.00、10.02 µm, 对应4种不同 谐振波长。模式选择和复用模块中的5个波导间隔分 别为 0.25、0.20、0.20、0.47、0.20 µm。 图 5 显示的是 在上述仿真参数设置下的 SMR、CMR 以及非对称定 向耦合器的场强分布及输出端口的透射谱线图。默认 状态下,SMR和CMR都处于谐振状态(on-state)。对 于CMR,默认情况下,从输入端口输入的基模信号会 耦合到下载端口(drop)输出,并保持基模不变。当对 CMR施加电压时,其谐振波长会发生偏移,从输入端 口输入的基模信号会从直通端口(through)输出,如图 5(b)和5(c)所示。对于SMR,默认状态下,从输入端 输入的基模 TE。信号会激发多模波导中的 TE1信号从 drop端口输出,并伴随着小于-15.3 dB的模间串扰噪 声,如图 5(d)和 5(e)所示。图 5(f)显示的是非对称定 向耦合器中TE₀信号转换为TE₁时的场强分布,其中, 耦合长度和间距分别为15μm和0.2μm。

在进行16×16网络级的仿真中,光栅耦合器的耦 合损耗为3.6 dB/facet,波导传播损耗1.5 dB/cm。每 个输入端口的光信号可以被调制到多个波长。例如, 当输出端口分别为O₁/O₅/O₉/O₁₃,O₂/O₆/O₁₀/O₁₄,O₃/ O₇/O₁₁/O₁₅和O₄/O₈/O₁₂/O₁₆时,I₁的输入信号需要分别 调制为λ1、λ2、λ3和λ4。选择I1作为输入端口,测量目标 端口从O₁切换到O₁₆时16个输出端口的透射光谱,仿 真结果如图 6 所示。当所有 MRRs 都处于关闭状态 时,从L输入的波长为λ的信号,能够在O,端口检测到 最大的输出功率,且其他端口对O1口的串扰噪声小于 $-25 \, dB$ 。当 I₁输入的波长为 λ_2 、 λ_3 和 λ_4 时的信号时,O₂、 O₃和O₄端口能够分别检测到最大的信号功率。可以 说明从 I_1 输入 λ_1 、 λ_2 、 λ_3 和 λ_4 的光信号将分别传输到 O_1 、 O_2 、 O_3 和 O_4 端口。同理,当CMR₁~CMR₄打开时,从I₁ 输入 λ_1 、 λ_2 、 λ_3 和 λ_4 的信号将分别从O₅、O₆、O₇和O₈输 出。当 CMR_9 ~ CMR_1 ;被打开时,从 I_1 输入的具有 λ_1 、 λ_2 、 λ_3 和 λ_4 的信号将分别从O₉、O₁₀、O₁₁和O₁₂输出。当 CMR₁~CMR₄和 CMR₁₃~CMR₁₆ 打开时,从 I₁ 输入的

图 5 传输谱线和场强分布图。(a)不同波导宽度下的有效折射率;(b)~(e)半径为10 μm的CMR和SMR的drop和through端口的 传输谱线和场强分布图;(f)非对称定向耦合器的场强分布

Fig. 5 Transmission spectra and field intensity distributions. (a) Effective index values with different waveguide widths; (b)-(e) transmission spectra and field intensity distributions of drop and through ports of CMR and SMR with a radius of 10 μm; (f) field intensity distribution of asymmetric directional coupler

带有 λ_1 、 λ_2 、 λ_3 和 λ_4 的信号将分别从O₁₃、O₁₄、O₁₅和O₁₆输 出。从图 6 中可以看出,每个子图中只有相应的输出 端口具有最大的输出功率(最小的插入损耗)。在 16 组交换链路中,路径 I₁→O₁₆具有最大的插入损耗,约 为 9.3 dB。路径 I₁→O₁具有最小的插入损耗,约为 8.95 dB。最大和最小插入损耗的差值小于 0.5 dB,说 明交换网络具有良好的公平性。对于从 I₁到 O₁₋₄、 O₉₋₁₂的传输路径,输入 M₁信号首先转换为 M₂模式以 便在网络中传输,并对输出端口O₅₋₈和O₁₃₋₁₆造成模间 串扰(M₂到 M₁的串扰),其中模式间串扰小于 -23.5 dB。对于从 I₁到 O₅₋₈、O₁₃₋₁₆的传输路径中输入 M₁信 号不需要模式转换,但同样会对 O₁₋₄、O₉₋₁₂造成小于 -18.4 dB的模间串扰。

此外,为了验证所提架构支持多播传输的可行性, 将I₁的输入信号同时调制到4个操作波长,并以O₃、 O₅、O₁₂、O₁₄作为输出信号观测端口。对相应微环阵列 的操作分别为无操作、打开CMR₁、打开CMR₁₂、打开 CMR₂和CMR₁₄。图7为所提架构在4个波长同时工 作下的多播传输频谱图,从图中可看出,相应输出端口 O₃、O₅、O₁₂、O₁₄的插入损耗均小于10 dB,且分别存在 小于-18.5、-17.3、-21.3、-16.2 dB的模间串扰。 因此,所提交换架构能够实现多播通信,并能提高频谱 利用率,实现更大规模和容量的交换网络。

3.2 16×16网络交换性能仿真测试

为了演示所提结构的路由交换能力,仿真测试了 网络在单通道25 Gbps时的眼图性能。图8显示了在 16×16交换结构中,从I1-4到O1-16的眼图,可以看出所 有的状态有比较清晰的眼图效果,因此理论上可以实 现 400 Gbps 的带宽性能。不同的路径交换通过控制 交换结构中的CMR和SMR的状态来实现。当所有 MRRs 处于关闭状态时, λ_1 、 λ_2 、 λ_3 和 λ_4 输入到 I₁到 I₄ 的信号将分别从O₁到O₄端口输出,从而得到了如图8 所示的I₁₋₄→O₁₋₄的眼图。当CMR₁~CMR₄打开时,从 I_1 到 I_4 的信号分别从 O_5 到 O_8 输出,得到图8第2行所示 的眼图。当CMR₉~CMR₁₂打开时,从I₁到I₄的信号从 O_9 到 O_{12} 输出,得到图8第3行所示 $I_{1-4} \sim O_{9-12}$ 的眼图。 当CMR₁~CMR₄和CMR₁₃~CMR₁₆打开时,从I₁到I₄的 输入信号分别从O13到O16输出,如图8中第4行的眼图 所示。此外,还可以得到各开关路径的消光比(ER)、 上升时间(RT)和下降时间(FT)的结果。

由于 $I_{1-4} \rightarrow O_{5*}$ 及 $I_{1-4} \rightarrow O_{9+12}$ 的通信服务均只打开 一个微环阵列,因此对比图 8中的第2、3行眼图,可以 发现 O_5 到 O_8 检测到的眼图性能总体上要优于 O_9 到 O_{12} $检测到的眼图性能。这主要是因为<math>I_{1-4} \rightarrow O_{5*8}$ 的通信服 务采用的是基模(TE₀)进行传输, $I_{1-4} \rightarrow O_{9+12}$ 的通信服 务采用的是一阶模(TE₁)进行传输,而TE₁比TE₀损耗

图 6 16×16 MDM-WDM 交换网络的传输光谱。输入端口为 I₁,输出端口从 O₁切换到 O₁₆

Fig. 6 Transmission spectra of 16×16 MDM-WDM switching network. Input port is I1 and output ports are switched from O1 to O16

Fig. 7 Multicast transmission spectra of 16×16 MDM-WDM switching network. Input port is I₁ and output ports are O₃, O₅, O₁₂, and O₁₄

大。此外,TE₁需要在发送和接收端各进行一次模式 复用,在交换模块处进行一次解复用,不可避免地存在 一定的模式转换损耗。此外,纵向对比图8中的4列眼 图,可以发现O₁到O₄检测到的眼图性能最优,且I₄-O₄ 的传输具有最大的ER。这主要是由于来自I₁₋₄→O₁₋₄ 的通信服务不需要打开任何MRR单元,因此由I₁₋₄→ O₁₋₄能够获得更优的网络性能,这也意味着减少微环的打开数量可以有效地减小传输过程中的损耗对网络性能的负面影响。

3.3 网络插入损耗及可扩展性能分析

根据文献[23],交换网络最大的插入损耗性能可 以很好地反映交换结构的可扩展性,小的插入损耗可 以使网络能够接入更多的交换节点。因此,在这部分 中,建立了一个理论分析模型来近似估计本文所提的 光交换网络与传统的 SWSM 和 MWSM 光交换网络 的插入损耗。为了公平比较,采用图9所示的两种2× 2光开关结构来表征 SWSM 和 MWSM 结构。

插入损耗主要来源于2×2开关单元以及它们之间的交叉波导。对于交换单元,如图3所示,输入信号 经过多个基本的光器件到达输出端口。假设L^{m,w}表示 从第*i*个输入端口到第*j*个输出端口的携带*m*模式和*w* 波长的信号的插入损耗。L_{CMR,on}、L_{CMR,off}、L_{bend}、L_{MC}、 L_{taper}和L_c分别表示打开状态的CMR、关闭状态下的 CMR、弯曲波导、模式转换器、锥形器和交叉波导的插 入损耗系数。N_{CMR,on}、N_{CMR,off}、N_{bend}、N_{MC}、N_{taper}和N_c分 别表示传输路径中对应光器件的个数。因此,L^{m,w}可 以计算为

图 8 传输速率为 25 Gbps 时数据从 I₁₋₄传输到 O₁₋₁₆的眼图 Fig. 8 Eye diagrams for data transmission through optical links from I₁₋₄ to O₁₋₁₆ when transfer rate is 25 Gbps

图 9 对比结构。(a) 基于 SWSM 的 2×2交换单元;(b) 基于 MWSM 的 2×2交换单元 Fig. 9 Structures for comparison. (a) SWSM-based 2×2 switching unit; (b) MWSM-based 2×2 switching unit

 $L_{i,j}^{m,w} = L_{\text{CMR,on}}^{N_{\text{CMR,off}}} \bullet L_{\text{CMR,off}}^{N_{\text{tend}}} \bullet L_{\text{MC}}^{N_{\text{bend}}} \bullet L_{\text{MC}}^{N_{\text{tend}}} \bullet L_{\text{taper}}^{N_{\text{tend}}} \bullet L_{\text{c}}^{N_{\text{c}}}, \quad (4)$ 对应的插入损耗为

$$l_{i,j}^{m,w} = 10 \lg L_{i,j}^{m,w}$$
(5)

对于一个完整的片上交换网络,一个光信号将通 过光栅耦合器(GCs)、多级交换单元、接收单元和交叉 波导到达目标端口。由于很难跟踪来自每个光学器件 的所有端口的信号,所以可使用一种近似的方法来评 估所有信号的最大插入损耗。假设最小输出信号功 率为

 $P_{\min} = P_{\min} \bullet L_{GC} \bullet L_{mod} (\max) \bullet L_{MSM} (\max) \bullet$

 $L_{i,j}^{m,w}(\max)^{2\log_2 N-1} \cdot L_c^{2(N-\log_2 N-1)} \cdot L_{deMUX}(\max)$,(6) 式中: L_{GC} 为光栅耦合器的功率损耗系数; $L_{mod}(\max)$ 、 $L_{MSM}(\max)$ 、 $L_{i,j}^{m,w}(\max)$ 、 $L_{deMUX}(\max)$ 分别为调制器、 MSM、2×2光开关、模式和波长解复用器的最大功率 损耗系数。

图 10显示了最大插入损耗的仿真结果。从图中 可以看出,在同一网络规模下,基于 SWSM 的交换结 构的最大插入损耗远高于其他交换结构。这是因为在 相同的网络规模下,基于SWSM的交换解决方案需要 一个大规模的Benes网络来实现多个节点的互连。因 此,数据传输需要通过更多的2×2个开关单元和相邻 层级之间的交叉波导,从而增加了插入损耗。与基于 MWSM的开关结构相比,本文所提结构可以在不增 加波长成本的情况下有效地减少插入损耗,这一优势 随着网络的规模扩大而变得更加明显。此外,相同的 插入损耗下,本文所提的结构支持的节点数量大于传 统的基于SWSM和MWSM的结构,这也说明本文所 提结构在扩大网络规模方面具有明显的优势。另一方 面,对于使用的相同数量的波长,如果使用M模式用 于多路复用,所提交换架构中使用的2×2开关模块的 数量将减少 $M(2\log_2 N-1)/[2\log_2(N/M)-1]$ 次。 Benes 拓扑的控制复杂度将降 $(\text{ff} 2^{(2\log_2 N - 1)/[2\log_2(N/M) - 1]}) \times \mathbb{I}$

图 10 本文结构与传统的基于 SWSM 和 MWSM 的结构在不同网络规模下的最大插入损耗性能对比

- Fig. 10 Maximum insertion loss performance comparison between this work and traditional SWSM-based and MWSM-based structures under different network scales
- 4 结 论

本文对多维复用的大规模、大容量片上光交换网 络进行研究,提出了一种基于波长和模式混合复用的 新型无阻塞片上光交换网络架构。该架构采用多波 长、多模式的多维复用方式,并基于MRR实现波长和 模式选择/复用以及波长和模式混合复用2×2光开 关,提高了片上光交换网络的传输容量和通道数目。 此外,为了实现无阻塞特性,采用Benes拓扑互连成大 规模交换网络。为了验证上述所提架构器件级、网络 级的交换和扩展性能,采用一个具有2模式、4波长混 合复用的16×16交换网络架构进行仿真模拟,结果证 明,所提交换网络能够实现所有节点间多维复用信号 的并行数据交换,且16×16网络的最大插入损耗小于 2.1 dB,模间串扰小于-18.4 dB,最大和最小插入损 耗差值小于0.5dB,证明该交换网络具有良好的公平 性。此外,还仿真验证了所提结构可以实现多播传输。 最后,对网络级最大插入损耗的分析表明,该结构比传 统的基于 SWSM 和基于 MWSM 的结构具有更低的 插入损耗,从而可以支持更多的节点交换。由于插入 损耗主要来源于2×2开关单元以及它们之间的交叉 波导,未来可以通过优化结构进一步降低插入损耗并 提高波长复用及模式复用的规模,助力于大规模光数 据中心交换网络的实现。

参考文献

- Lu P, Zhang L, Liu X H, et al. Highly efficient data migration and backup for big data applications in elastic optical inter-datacenter networks[J]. IEEE Network, 2015, 29(5): 36-42.
- Wei W T, Gu H X, Wang K, et al. Improving cloud-based IoT services through virtual network embedding in elastic optical inter -DC networks[J]. IEEE Internet of Things Journal, 2019, 6(1): 986-996.

- [3] Guo P X, Hou W G, Guo L, et al. Fault-tolerant routing mechanism in 3D optical network-on-chip based on node reuse
 [J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(3): 547-564.
- [4] Wang Z F, Xu J, Yang P, et al. High-radix nonblocking integrated optical switching fabric for data center[J]. Journal of Lightwave Technology, 2017, 35(19): 4268-4281.
- [5] Suzuki K, Konoike R, Matsuura H, et al. Recent advances in large-scale optical switches based on silicon photonics[C]//2022 Optical Fiber Communication Conference (OFC), March 6-10, 2022, San Diego, California. Washington, D. C.: Optica Publishing Group, 2022: W4B.6.
- [6] Parra J, Olivares I, Brimont A, et al. Toward nonvolatile switching in silicon photonic devices[J]. Laser & Photonics Reviews, 2021, 15(6): 2000501.
- [7] 杨晓雪,胡冰,魏晓强,等.一种新型的高容量光互连架构[J]. 光学学报,2021,41(14):1406002.
 Yang X X, Hu B, Wei X Q, et al. Novel architecture for high capacity optical interconnects[J]. Acta Optica Sinica, 2021,41 (14):1406002.
- [8] Qiu C Y, Zhang C, Zeng H Y, et al. High-performance graphene-on-silicon nitride all-optical switch based on a Mach – Zehnder interferometer[J]. Journal of Lightwave Technology, 2021, 39(7): 2099-2105.
- [9] Qiao L, Tang W J, Chu T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units[J]. Scientific Reports, 2017, 7(1): 1-7.
- [10] Guo Z Z, Lu L J, Zhou L J, et al. 16×16 silicon optical switch based on dual-ring-assisted Mach - Zehnder interferometers[J]. Journal of Lightwave Technology, 2018, 36(2): 225-232.
- [11] Nikolova D, Rumley S, Calhoun D, et al. Scaling silicon photonic switch fabrics for data center interconnection networks [J]. Optics Express, 2015, 23(2): 1159-1175.
- [12] Guo P X, Hou W G, Guo L, et al. Potential threats and possible countermeasures for photonic network-on-chip[J]. IEEE Communications Magazine, 2020, 58(9): 48-53.
- [13] Huang Y S, Cheng Q X, Hung Y H, et al. Multi-stage 8×8 silicon photonic switch based on dual-microring switching elements[J]. Journal of Lightwave Technology, 2020, 38(2): 194-201.
- [14] Guo P X, Hou W G, Guo L, et al. Low insertion loss and nonblocking microring-based optical router for 3D optical networkon-chip[J]. IEEE Photonics Journal, 2018, 10(2): 7901010.
- [15] Fu M C, Zheng Y, Li G Y, et al. Ultra-compact titanium dioxide micro-ring resonators with sub-10-μm radius for on-chip photonics[J]. Photonics Research, 2021, 9(7): 1416-1422.
- [16] Li C L, Liu D J, Dai D X. Multimode silicon photonics[J]. Nanophotonics, 2018, 8(2): 227-247.
- [17] Han X, Xiao H F, Ren G H, et al. On-chip non-blocking optical mode exchanger for mode-division multiplexing interconnection networks[J]. Journal of Lightwave Technology, 2021, 39(20): 6563-6571.
- [18] 吕元帅, 汪成根, 袁伟, 等. 基于相变材料的可重构模式复用 光波导开关[J]. 光学学报, 2021, 41(17): 1723001.
 Lü Y S, Wang C G, Yuan W, et al. Reconfigurable mode multiplexer waveguide switch based on phase change material[J].
 Acta Optica Sinica, 2021, 41(17): 1723001.
- [19] Luo L W, Ophir N, Chen C P, et al. WDM-compatible modedivision multiplexing on a silicon chip[J]. Nature Communications, 2014, 5(1): 1-7.
- [20] 王健. 面向光互连的硅基片上复用器件的研究[D]. 杭州: 浙江 大学, 2015.
 Wang J. Silicon-based on-chip multiplexing devices for optical interconnects[D]. Hangzhou: Zhejiang University, 2015.
- [21] 王健,曹晓平,张新亮.片上集成多维光互连和光处理[J].中国激光,2021,48(12):1206001.

Wang J, Cao X P, Zhang X L. On-chip integrated multi-

dimensional optical interconnects and optical processing[J]. Chinese Journal of Lasers, 2021, 48(12): 1206001.

[22] ANSYS-Lumerical[EB/OL]. [2022-11-09]. https://www. lumerical.com. [23] Chan J, Hendry G, Biberman A, et al. Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis[J]. Journal of Lightwave Technology, 2010, 28(9): 1305-1315.

On-Chip Optical Switching Network Architecture Based on Hybrid Wavelength and Mode Division Multiplexing

Guo Pengxing^{1,2}, Zhou Jiahao^{1,2}, Hou Weigang^{1,2*}, Guo Lei^{1,2}

¹School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; ²Institute of Intelligent Communication and Network Security, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China

Abstract

Objective Due to the limitation of electronic bottleneck, the traditional switching networks based on electrical devices are challenging to meet the needs of large-scale data exchange in the big data era. As an alternative, emerging silicon-based optical switching networks can effectively increase network capacity and reduce energy consumption. In addition, taking advantage of wavelength division multiplexing (WDM) or mode division multiplexing (MDM) technologies, multiple optical signals can be transmitted simultaneously in one optical link, effectively improving the optical interconnection density and communication bandwidth. However, the current optical switching network usually uses only WDM or MDM, which can only partially develop the parallel advantages of optics. Thus, we propose a novel on-chip optical switching network architecture based on hybrid wavelength and mode division multiplexing (WDM-MDM) technology. By inputting data of different wavelengths and modes into a single optical waveguide to achieve parallel transmission, the switching network's capacity multiplies. In addition, the proposed architecture enables data transmission between all nodes in parallel and supports multicast communication. The proposed architecture is expected to address the challenges of high-capacity switching requirements faced by data center networks by scaling the number of multiplexed wavelengths and modes.

Methods We propose an on-chip optical switching network architecture (Fig. 1) based on hybrid WDM-MDM technology. The architecture uses Benes topology as the core switching unit to achieve non-blocking features. Besides, we design a mode selection/multiplexing (MSM) module-based transmitting module [Figs. 2(a)-2(b)]. All nodes are divided into 2N groups at the transmitting module, with each containing W processor nodes. Each node is connected to a microring resonator (MRR)-based modulator array at the transmitter side to realize electro-optical conversion. The modulated optical signal is then transmitted to the MSM module. In the MSM module, one of the input fundamental mode signals will be converted into a higher-order mode signal. Then these two different mode signals will be multiplexed into a multi-mode waveguide and transmitted to the input port of the hybrid WDM-MDM switching unit of 2×2 (Fig. 3). The switching unit contains two passive mode multiplexers (demultiplexers) and two double-ring MRR-based single-mode optical switching units of 2×2 . Each input port in the hybrid WDM-MDM switching unit of 2×2 includes two modes and W different wavelengths, so it supports data exchange of any combination of 2W input data channels. Finally, we use Benes topology to cascade the proposed switching unit of 2×2 to form a large-scale hybrid WDM-MDM optical switching network.

Results and Discussions We use the ANSYS Lumerical Solutions simulation platform to conduct device-level and system-level modeling and hardware parameter optimization for a 2-mode, 4-wavelength-based scale switching network of 16×16 . The width of the single- and the multi-mode waveguide is 0.45 µm and 1 µm; the radii of the MRRs are 9.96, 9.98, 10, and 10.02 µm; the gaps 1-5 in CMR and SMR are 0.25, 0.2, 0.2, 0.47, and 0.2 µm, and the coupling length and gap in mode conversion region 1 are 15 and 0.20 µm, respectively. Figure 4 shows the transmission spectra and filed intensity distribution simulation results of the CMR switch, SMR switch, and asymmetric mode converter. Then, we analyze the transmission spectrum of the 16×16 switching network by choosing I₁ as the input port and measuring the transmission spectra of 16 output ports (Fig. 6). Among the 16 switching links, I₁→O₁₆ has the maximum insertion loss of about 9.30 dB, and the path I₁→O₁ has the minimum insertion loss of about 8.95 dB. The difference between the

maximum and minimum insertion loss is less than 0.5 dB, which indicates that the switching network has excellent fairness. The input signal of I_1 is also modulated to four operational wavelengths, and the output signal is observed at the corresponding output port (Fig. 7), which verifies that the switching architecture is capable of multicast communication. In addition, we simulate the eye diagram with a single channel of 25 Gbps data rate and obtain the extinction ratio, rise time, and fall time results (Fig. 8). The results show that the detected eye diagram performance is better from $I_{1.4}$ to $O_{1.4}$, which means that reducing the number of MRRs turned on can effectively reduce the negative influence on the network performance. Finally, we compare the proposed architecture with traditional single-wavelength single-mode (SWSM) and multi-wavelength single-mode (MWSM) optical switching architectures. The results show that the proposed architecture can effectively reduce the insertion loss without increasing the wavelength cost, and this advantage becomes more obvious as the size of the network expands (Fig. 10).

Conclusions We propose a scalable WDM-MDM-based on-chip optical switching network architecture and design an MRR-based wavelength/mode selection/multiplexing module and a WDM-MDM optical switching module of 2×2 . As a proof of concept, a switching network architecture of 16×16 with 2-mode, 4-wavelength, and Benes topology of 2×2 has been simulated. Finally, the maximum insertion loss performance of the proposed architecture and the traditional SWSM-based and MWSM-based switching architectures are simulated and analyzed, and the superiority of the proposed architecture is proven. The proposed architecture can further increase the scale of wavelength multiplexing and mode multiplexing and reduce the insertion loss through structural optimization, which can help realize large-scale and high-capacity optical data center switching networks.

Key words integrated optics; on-chip optical switching network; non-blocking; microring resonators; hybrid wavelength and mode division multiplexing; multicast communication